FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_NAVIERSTOKES16 2D Example for stationary flow around a cylinder with an attached beam.
[ FEA, OUT ] = EX_NAVIERSTOKES16( VARARGIN ) Stationary flow around a cylinder with an attached solid beam.
[1] Hron J. A monolithic FEM/multigrid solver for ALE formulation of fluid structure interaction with application in biomechanics. In H.-J. Bungartz and M. Schäfer, editors, Fluid-Structure Interaction: Modelling, Simulation, Optimisation, LLNCSE. Springer, 2006.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- hmax scalar {0.025} Grid size sf_u string {sflag1} Shape function for velocity sf_p string {sflag1} Shape function for pressure iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'hmax', 0.025; 'sf_u', 'sflag1'; 'sf_p', 'sflag1'; 'iplot', 1; 'tol', [0.1 0.1]; 'fid', 1 }; [got,opt] = parseopt( cOptDef, varargin{:} ); fid = opt.fid; rho = 1e3; miu = 1; umean = 0.2; diam = 0.1; % Geometry. fea.sdim = { 'x', 'y' }; gobj1 = gobj_rectangle( 0, 2.5, 0, 0.41, 'R1' ); gobj2 = gobj_circle( [0.2 0.2], diam/2, 'C1' ); gobj3 = gobj_rectangle( [0.2], [0.6], [0.2-0.01], [0.2+0.01], 'R2' ); fea.geom.objects = { gobj1 gobj2 gobj3 }; fea.geom = copy_geometry_object( 'C1', fea.geom ); fea.geom = copy_geometry_object( 'R2', fea.geom ); fea.geom = geom_apply_formula( fea.geom, 'R1-C1-R2' ); fea.geom = geom_apply_formula( fea.geom, 'R3-C2' ); % Grid generation. fea.grid = gridgen( fea, 'hmax', opt.hmax, 'gridgen', 'gridgen2d', 'fid', opt.fid ); % Equation settings. fea = addphys( fea, @navierstokes ); fea.phys.ns.sfun = { opt.sf_u, opt.sf_u, opt.sf_p }; fea.phys.ns.eqn.coef{1,end} = { rho, 0 }; % Density. fea.phys.ns.eqn.coef{2,end} = { miu, 0 }; % Viscosity. fea.phys.ns.prop.active = [ 1, 0; 1, 0; 1, 0 ]; % Boundary settings. fea.phys.ns.bdr.sel = [ 1 3 1 2 ones(1,9) ]; fea.phys.ns.bdr.coef{2,end}{1,4} = ['1.5*',num2str(umean),'/(0.41/2)^2*y*(0.41-y)']; % Solver. fea = parsephys(fea); fea = parseprob(fea); fea.sol.u = solvestat( fea, 'fid', opt.fid ); % Call to stationary solver. % Postprocessing. s_velm = 'sqrt(u^2+v^2)'; if ( opt.iplot>0 ) figure subplot(2,1,1) postplot( fea, 'surfexpr', s_velm ) title( 'Velocity field' ) subplot(2,1,2) postplot( fea, 'surfexpr', 'p' ) title( 'Pressure' ) end % Calculate benchmark quantities (line integration method). s_tfx = ['nx*p+',num2str(miu),'*(-2*nx*ux-ny*(uy+vx))']; s_tfy = ['ny*p+',num2str(miu),'*(-nx*(vx+uy)-2*ny*vy)']; i_int = [5:8,11:13]; % Integration boundaries. i_cub = 10; F_d1 = intbdr(s_tfx,fea,i_int,i_cub,size(fea.sol.u,2),1); F_l1 = intbdr(s_tfy,fea,i_int,i_cub,size(fea.sol.u,2),1); % Calculate benchmark quantities (volume integration method). % Create field 'a' with values one on the cylinder and zero everywhere else. fea.dvar = [ fea.dvar, {'a'} ]; fea.sfun = [ fea.sfun, fea.sfun(1) ]; fea = parseprob(fea); n_dof = max(fea.eqn.dofm{1}(:)); [~,ind_gdof] = evalexprdof(0,1,fea,i_int); u_a = zeros(n_dof,1); u_a(ind_gdof) = 1; fea.sol.u= [fea.sol.u;repmat(u_a,1,size(fea.sol.u,2))]; fea.eqn = struct; fea.bdr = struct; fea = parseprob(fea); s_tfx = ['ax*p+',num2str(miu),'*(-2*ax*ux-ay*(uy+vx))-(u*ux+v*uy)*a']; s_tfy = ['ay*p+',num2str(miu),'*(-ax*(vx+uy)-2*ay*vy)-(u*vx+v*vy)*a']; F_d2 = intsubd(s_tfx,fea,1,find(fea.grid.s==1),3); F_l2 = intsubd(s_tfy,fea,1,find(fea.grid.s==1),3); if( ~isempty(fid) ) fprintf(fid,'\n\nBenchmark quantities:\n\n') fprintf(fid,'Drag force, Fd = %6f (l), %6f (v) (Ref: 14.929)\n',F_d1,F_d2) fprintf(fid,'Lift force, Fl = %6f (l), %6f (v) (Ref: 1.11905)\n',F_l1,F_l2) end % Error checking. out.Fd = [F_d1 F_d2]; out.Fl = [F_l1 F_l2]; out.err = [abs(out.Fd-14.929)/14.929; abs(out.Fl-1.11905)/1.11905]; out.pass = (out.err(1,2)<opt.tol(1))&(out.err(2,2)<opt.tol(2)); if ( nargout==0 ) clear fea out end