Finite Element Analysis Toolbox
ex_navierstokes16.m File Reference

Description

EX_NAVIERSTOKES16 2D Example for stationary flow around a cylinder with an attached beam.

[ FEA, OUT ] = EX_NAVIERSTOKES16( VARARGIN ) Stationary flow around a cylinder with an attached solid beam.

Reference

[1] Hron J. A monolithic FEM/multigrid solver for ALE formulation of fluid structure interaction with application in biomechanics. In H.-J. Bungartz and M. Schäfer, editors, Fluid-Structure Interaction: Modelling, Simulation, Optimisation, LLNCSE. Springer, 2006.

Accepts the following property/value pairs.

Input       Value/{Default}        Description
-----------------------------------------------------------------------------------
hmax        scalar {0.025}         Grid size
sf_u        string {sflag1}        Shape function for velocity
sf_p        string {sflag1}        Shape function for pressure
iplot       scalar 0/{1}           Plot solution (=1)
                                                                                  .
Output      Value/(Size)           Description
-----------------------------------------------------------------------------------
fea         struct                 Problem definition struct
out         struct                 Output struct
See also
ex_navierstokes3

Code listing

 cOptDef = { ...
             'hmax',     0.025;
             'sf_u',     'sflag1';
             'sf_p',     'sflag1';
             'iplot',    1;
             'tol',      [0.1 0.1];
             'fid',      1 };
 [got,opt] = parseopt( cOptDef, varargin{:} );
 fid       = opt.fid;


 rho   = 1e3;
 miu   = 1;
 umean = 0.2;
 diam  = 0.1;


% Geometry.
 fea.sdim = { 'x', 'y' };
 gobj1 = gobj_rectangle( 0, 2.5, 0, 0.41, 'R1' );
 gobj2 = gobj_circle( [0.2 0.2], diam/2, 'C1' );
 gobj3 = gobj_rectangle( [0.2], [0.6], [0.2-0.01], [0.2+0.01], 'R2' );
 fea.geom.objects = { gobj1 gobj2 gobj3 };
 fea.geom = copy_geometry_object( 'C1', fea.geom );
 fea.geom = copy_geometry_object( 'R2', fea.geom );
 fea.geom = geom_apply_formula( fea.geom, 'R1-C1-R2' );
 fea.geom = geom_apply_formula( fea.geom, 'R3-C2' );


% Grid generation.
 fea.grid = gridgen( fea, 'hmax', opt.hmax, 'gridgen', 'gridgen2d', 'fid', opt.fid );


% Equation settings.
 fea = addphys( fea, @navierstokes );
 fea.phys.ns.sfun = { opt.sf_u, opt.sf_u, opt.sf_p };
 fea.phys.ns.eqn.coef{1,end} = { rho, 0 };   % Density.
 fea.phys.ns.eqn.coef{2,end} = { miu, 0 };   % Viscosity.
 fea.phys.ns.prop.active = [ 1, 0; 1, 0; 1, 0 ];


% Boundary settings.
 fea.phys.ns.bdr.sel = [ 1 3 1 2 ones(1,9) ];
 fea.phys.ns.bdr.coef{2,end}{1,4} = ['1.5*',num2str(umean),'/(0.41/2)^2*y*(0.41-y)'];


% Solver.
 fea = parsephys(fea);
 fea = parseprob(fea);

 fea.sol.u = solvestat( fea, 'fid', opt.fid );   % Call to stationary solver.


% Postprocessing.
 s_velm = 'sqrt(u^2+v^2)';
 if ( opt.iplot>0 )
   figure
   subplot(2,1,1)
   postplot( fea, 'surfexpr', s_velm )
   title( 'Velocity field' )
   subplot(2,1,2)
   postplot( fea, 'surfexpr', 'p' )
   title( 'Pressure' )
 end


% Calculate benchmark quantities (line integration method).
 s_tfx = ['nx*p+',num2str(miu),'*(-2*nx*ux-ny*(uy+vx))'];
 s_tfy = ['ny*p+',num2str(miu),'*(-nx*(vx+uy)-2*ny*vy)'];
 i_int = [5:8,11:13];   % Integration boundaries.
 i_cub = 10;
 F_d1  = intbdr(s_tfx,fea,i_int,i_cub,size(fea.sol.u,2),1);
 F_l1  = intbdr(s_tfy,fea,i_int,i_cub,size(fea.sol.u,2),1);


% Calculate benchmark quantities (volume integration method).

% Create field 'a' with values one on the cylinder and zero everywhere else.
 fea.dvar = [ fea.dvar, {'a'}       ];
 fea.sfun = [ fea.sfun, fea.sfun(1) ];
 fea      = parseprob(fea);
 n_dof    = max(fea.eqn.dofm{1}(:));
 [~,ind_gdof] = evalexprdof(0,1,fea,i_int);
 u_a      = zeros(n_dof,1);
 u_a(ind_gdof) = 1;
 fea.sol.u= [fea.sol.u;repmat(u_a,1,size(fea.sol.u,2))];
 fea.eqn  = struct;
 fea.bdr  = struct;
 fea      = parseprob(fea);

 s_tfx    = ['ax*p+',num2str(miu),'*(-2*ax*ux-ay*(uy+vx))-(u*ux+v*uy)*a'];
 s_tfy    = ['ay*p+',num2str(miu),'*(-ax*(vx+uy)-2*ay*vy)-(u*vx+v*vy)*a'];
 F_d2     = intsubd(s_tfx,fea,1,find(fea.grid.s==1),3);
 F_l2     = intsubd(s_tfy,fea,1,find(fea.grid.s==1),3);


 if( ~isempty(fid) )
   fprintf(fid,'\n\nBenchmark quantities:\n\n')

   fprintf(fid,'Drag force,    Fd = %6f (l), %6f (v) (Ref: 14.929)\n',F_d1,F_d2)
   fprintf(fid,'Lift force,    Fl = %6f (l), %6f (v) (Ref: 1.11905)\n',F_l1,F_l2)
 end


% Error checking.
 out.Fd   = [F_d1 F_d2];
 out.Fl   = [F_l1 F_l2];
 out.err  = [abs(out.Fd-14.929)/14.929;
             abs(out.Fl-1.11905)/1.11905];
 out.pass = (out.err(1,2)<opt.tol(1))&(out.err(2,2)<opt.tol(2));
 if ( nargout==0 )
   clear fea out
 end