|
FEATool Multiphysics
v1.17.5
Finite Element Analysis Toolbox
|
EX_MULTIPHASE3 Breaking dam multiphase flow example.
[ FEA, OUT ] = EX_MULTIPHASE3( VARARGIN ) Breaking dam multiphase flow benchmark problem as defined in Martin J, Moyce W. Part IV. An Experimental study of the collapse of liquid columns on a rigid horizontal plane. Phil. Trans. R. Soc. Lond. A 1952; 244(882):312–324, 1952, DOI: 10.1098/rsta.1952.0006. Accepts the following property/value pairs.
Input Value/{Default} Description
-----------------------------------------------------------------------------------
rho1 scalar {998} Density of the water
rho2 scalar {1.205} Density of the surrounding air
miu1 scalar {0.001} Viscosity of the water
miu2 scalar {1.983e-5} Viscosity of the surrounding air
gy scalar {9.82} Gravitational constant
a scalar {0.05715} Width and height of the water column
igrid scalar 1/{0} Cell type (0=quadrilaterals, 1=triangles)
hmax scalar {a/12} Max grid cell size
dt scalar {} Time step size
sf_u string {sflag2} Shape function for velocity
sf_p string {sflag1} Shape function for pressure
sf_c string {sflag1} Shape function for the level set function
iplot scalar 0/{1} Plot solution and error (=1)
.
Output Value/(Size) Description
-----------------------------------------------------------------------------------
fea struct Problem definition struct
out struct Output struct
cOptDef = { ...
'rho1', 998; ...
'rho2', 1.205; ...
'miu1', 0.001; ...
'miu2', 1.983e-5; ...
'gy', 9.82; ...
'a', 0.05715; ...
'igrid', 0; ...
'hmax', 0.05715/18; ...
'dt', {}; ...
'sf_u', 'sflag2'; ...
'sf_p', 'sflag1'; ...
'sf_c', 'sflag1'; ...
'iplot', 1; ...
'itest', 0; ...
'fid', 1 };
[got,opt] = parseopt(cOptDef,varargin{:});
fid = opt.fid;
if( ~got.dt )
TSTEP = 0.05/sqrt(opt.gy/opt.a);
else
TSTEP = opt.dt;
end
TMAX= 3.0/sqrt(opt.gy/opt.a);
MAXNIT = 30;
if( opt.itest )
TMAX = TSTEP;
MAXNIT = 1;
end
% Geometry and grid generation.
l = 6*opt.a;
h = 1.5*opt.a;
fea.grid = rectgrid(round(l/opt.hmax),round(h/opt.hmax),[0 l;0 h]);
if( opt.igrid==1 )
fea.grid = quad2tri( fea.grid );
end
fea.sdim = { 'x' 'y' }; % Coordinate names.
n_bdr = max(fea.grid.b(3,:)) + 1; % Increment number of boundaries.
fea.grid.b(3,1) = n_bdr;
% Problem definition.
dh = num2str(1.5*opt.hmax); % Smoothing region width.
dw = ['(c/',dh,'/(sqrt(cx^2+cy^2+eps)))'];
smhs = ['((0.5*(1+',dw,'+1/pi*sin(pi*',dw,')))*(',dw,'>-1)*(',dw,'<1)+(',dw,'>=1))']; % Smooth heaviside function.
rho = [num2str(opt.rho1),'+',num2str(opt.rho2-opt.rho1),'*',smhs];
miu = [num2str(opt.miu1),'+',num2str(opt.miu2-opt.miu1),'*',smhs,'+2e2*',num2str(opt.hmax),'*sqrt(u^2+v^2+1e-2)'];
% Add Navier-Stokes equations physics mode.
fea = addphys(fea,@navierstokes);
fea.phys.ns.eqn.coef{1,end} = { rho };
fea.phys.ns.eqn.coef{2,end} = { miu };
fea.phys.ns.eqn.coef{4,end} = { ['-(',rho,')*',num2str(opt.gy)] };
fea.phys.ns.bdr.sel(n_bdr) = 4; % Set pressure to zero on last boundary segment.
fea.phys.ns.sfun = { opt.sf_u opt.sf_u opt.sf_p };
fea = addphys(fea,@convectiondiffusion);
fea.phys.cd.sfun = { opt.sf_c };
fea.phys.cd.eqn.coef{2,4} = { 0.001 }; % Set diffusion coefficient.
fea.phys.cd.eqn.coef{3,4} = { 'u' }; % Convection velocity in x-direction.
fea.phys.cd.eqn.coef{4,4} = { 'v' }; % Convection velocity in y-direction.
% Parse physics modes.
fea = parsephys(fea);
% Implement slip boundary conditions on left and bottom walls.
fea.bdr.d{1}{1} = [];
fea.bdr.d{1}{5} = [];
fea.bdr.d{2}{4} = [];
fea.bdr.n{1}{1} = 0;
fea.bdr.n{1}{5} = 0;
fea.bdr.n{2}{5} = 0;
% Parse problem.
fea = parseprob(fea);
% Call to time-dependent solver.
init = { '0', '0', '0', ['(x-',num2str(opt.a),')*((x-',num2str(opt.a),')>(y-',num2str(opt.a),'))+(y-',num2str(opt.a),')*((x-',num2str(opt.a),')<=(y-',num2str(opt.a),'))'] };
fea.sol.u = solvetime( fea, ...
'fid', fid, ...
'tmax', TMAX, ...
'tstep', TSTEP, ...
'icub', 3, ...
'maxnit', MAXNIT, ...
'init', init, ...
'ischeme', 3 );
% Postprocessing.
if ( opt.iplot>0 )
figure('position',[0 0 1920 1080])
subplot(2,2,1)
postplot(fea,'surfexpr','sqrt(u^2+v^2)')
title('Velocity field')
subplot(2,2,2)
postplot(fea,'surfexpr','p','evalstyle','exaxct')
title('Pressure')
subplot(2,2,3)
postplot(fea,'surfexpr','c')
title('Level set field')
subplot(2,2,4)
postplot(fea,'surfexpr',rho)
% postplot(fea,'isoexpr','c','isolev',[0 0],'arrowexpr',{'u','v'})
plot([0 l l 0 0],[0 0 h h 0],'k')
title('Interface')
end
out.err = [];
out.pass = [];
if ( nargout==0 )
clear fea out
end