|
FEATool Multiphysics
v1.17.5
Finite Element Analysis Toolbox
|
EX_HEATTRANSFER7 1D Transient heat diffusion with analytic solution.
[ FEA, OUT ] = EX_HEATTRANSFER7( VARARGIN ) Transient heat diffusion problem with analytic solution. A 1 m rod is kept at fixed temperature on one end and constant outward heat flux at the other end as in the following illustration.
+---------- L=1m ----------+ T = 25
q_n = 1 T(t=0) = 25
Accepts the following property/value pairs.
Input Value/{Default} Description
-----------------------------------------------------------------------------------
hmax scalar {0.1} Grid cell size
sfun string {sflag1} Finite element shape function
solver string fenics/{} Use FEniCS or default solver
ischeme scalar {2}/1/3 Time stepping scheme
tmax scalar {0.2} Maximum time
tstep scalar {0.01} Time step size
iplot scalar {1}/0 Plot solution (=1)
.
Output Value/(Size) Description
-----------------------------------------------------------------------------------
fea struct Problem definition struct
out struct Output struct
cOptDef = { 'hmax', 0.1;
'sfun', 'sflag1';
'solver', '';
'ischeme', 2;
'tmax', 0.2;
'tstep', 0.01;
'nstbwe', 0;
'iplot', 1;
'tol', 1e-3;
'fid', 1 };
[got,opt] = parseopt(cOptDef,varargin{:});
% Grid generation.
fea.grid = linegrid( round(1/opt.hmax), 0, 1 );
% Problem definition.
fea.sdim = { 'x' }; % Space coordinate name.
fea = addphys( fea, @heattransfer ); % Add heat transfer physics mode.
fea.phys.ht.sfun = { opt.sfun }; % Set shape function.
% Equation coefficients.
fea.phys.ht.eqn.coef{1,end} = 1; % Density.
fea.phys.ht.eqn.coef{2,end} = 1; % Heat capacity.
fea.phys.ht.eqn.coef{3,end} = 1; % Thermal conductivity.
fea.phys.ht.eqn.coef{6,end} = { 25 }; % Initial temperature.
% Boundary conditions.
fea.phys.ht.bdr.sel = [ 4 1 ];
fea.phys.ht.bdr.coef{1,end} = { [] 25 };
fea.phys.ht.bdr.coef{4,end}{1}{1} = -1;
% Parse physics modes and problem struct.
fea = parsephys(fea);
fea = parseprob(fea);
% Compute solution.
if( strcmp(opt.solver,'fenics') )
fea = fenics( fea, 'fid', opt.fid, ...
'tstep', opt.tstep, 'tmax', opt.tmax, 'ischeme', opt.ischeme, 'nproc', 1 );
tlist = fea.sol.t;
else
[fea.sol.u, tlist] = solvetime( fea, 'fid', opt.fid, 'init', {'T0_ht'}, 'ischeme', opt.ischeme, ...
'tmax', opt.tmax, 'tstep', opt.tstep, 'nstbwe', opt.nstbwe );
end
% Postprocessing.
T_ref = refsol( fea.grid.p', tlist(end) );
if( opt.iplot>0 )
postplot( fea, 'surfexpr', 'T', 'axequal', 0 )
title(['Temperature at t=',num2str(tlist(end))])
xlabel('x')
ylabel('T')
hold on
plot( fea.grid.p, T_ref, 'r--' )
end
% Error checking.
T_sol = evalexpr( 'T', fea.grid.p, fea );
out.err = norm( abs(T_sol-T_ref)/T_ref );
out.pass = out.err<opt.tol;
if( nargout==0 )
clear fea out
end
% -----------------------------------