|
FEATool Multiphysics
v1.17.5
Finite Element Analysis Toolbox
|
EX_HEATTRANSFER6 2D axisymmetric heat conduction.
[ FEA, OUT ] = EX_HEATTRANSFER6( VARARGIN ) NAFEMS benchmark example for heating of a solid cylider with an internal hole.
_ T=T_amb
^ +---------+
| q_n=0 | |
| : |
0.14m q_n=5e5 | | T=T_amb
| : |
| q_n=0 | |
v +---------+
T=T_amb
r=0.02
|<-0.08m->|
The geometry can be considered axisymmetric and the solid has a thermal conductivity of 52 W/mC, the middle part of the inside of the cylider is heated by 5e5 W/mK. The steady temperature at the point (0.04,0.04) is sought when the surrounding ambient temperature is T_amb = 0 C.
[1] Cameron AD, Casey JA, Simpson GB. Benchmark Tests for Thermal Analysis,
The National Agency for Finite Element Standards, UK, 1986.
Accepts the following property/value pairs.
Input Value/{Default} Description
-----------------------------------------------------------------------------------
hmax scalar {0.005} Grid cell size
sfun string {sflag1} Finite element shape function
solver string fenics/{} Use FEniCS or default solver
iplot scalar {1}/0 Plot solution (=1)
.
Output Value/(Size) Description
-----------------------------------------------------------------------------------
fea struct Problem definition struct
out struct Output struct
cOptDef = { 'hmax', 0.005;
'sfun', 'sflag1';
'solver', '';
'iplot', 1;
'tol', 1e-2;
'fid', 1 };
[got,opt] = parseopt(cOptDef,varargin{:});
% Geometry definition.
gobj = gobj_polygon( [ 0.02 0.1 0.1 0.02 0.02 0.02 ;
0 0 0.14 0.14 0.1 0.04 ]' );
fea.geom.objects = { gobj };
% Grid generation.
fea.grid = gridgen( fea, 'hmax', opt.hmax, 'fid', opt.fid );
% Problem definition.
fea.sdim = { 'r', 'z' }; % Space coordinate name.
fea = addphys( fea, @heattransfer ); % Add heat transfer physics mode.
fea.phys.ht.sfun = { opt.sfun }; % Set shape function.
% Equation coefficients.
fea.phys.ht.eqn.seqn = '- r*k_ht*(Tr_r + Tz_z) = 0';
fea.phys.ht.eqn.coef{3,end} = 52; % Thermal conductivity.
fea.phys.ht.eqn.coef{7,end} = { 273.15 }; % Initial temperature.
% Boundary conditions.
fea.phys.ht.bdr.sel = [1 1 1 3 4 3];
fea.phys.ht.bdr.coef{1,end} = { 273.15 273.15 273.15 [] [] [] };
fea.phys.ht.bdr.coef{4,end}{5}{1} = 'r*5e5';
% Parse physics modes and problem struct.
fea = parsephys(fea);
fea = parseprob(fea);
% Compute solution.
if( strcmp(opt.solver,'fenics') )
fea = fenics( fea, 'fid', opt.fid, 'nproc', 1 );
else
fea.sol.u = solvestat( fea, 'fid', opt.fid, 'init', {'T0_ht'} );
end
% Postprocessing.
if( opt.iplot>0 )
postplot( fea, 'surfexpr', 'T', 'isoexpr', 'T' )
title('Temperature, T')
end
% Error checking.
T_sol = evalexpr( 'T', [0.04;0.04], fea );
T_ref = 332.97;
out.err = abs(T_sol-T_ref)/T_ref;
out.pass = out.err<opt.tol;
if( nargout==0 )
clear fea out
end