|
FEATool Multiphysics
v1.17.5
Finite Element Analysis Toolbox
|
EX_CONVDIFF3 1D Time dependent convection and diffusion equation example.
[ FEA, OUT ] = EX_CONVDIFF3( VARARGIN ) 1D time dependendt convection and diffusion equation on a line with an infinately oscillating exact solution. Accepts the following property/value pairs.
Input Value/{Default} Description
-----------------------------------------------------------------------------------
w scalar {1.5*pi} Simulation parameter
U scalar {2} Simulation parameter
a scalar {1} Convection velocity
nu scalar {0.1} Diffusion coefficient
hmax scalar {1/25} Max grid cell size
dt scalar {0.02} Time step size
ischeme scalar {3} Time stepping scheme
sfun string {sflag2} Shape function
iplot scalar 0/{1} Plot solution (=1)
.
Output Value/(Size) Description
-----------------------------------------------------------------------------------
fea struct Problem definition struct
out struct Output struct
cOptDef = { ...
'w', 1.5*pi; ...
'U', 2; ...
'a', 1; ...
'nu', 0.1; ...
'hmax', 1/25; ...
'dt' 0.02; ...
'ischeme' 3; ...
'sfun', 'sflag1'; ...
'iplot', 1; ...
'tol', 3e-2; ...
'fid', 1 };
[got,opt] = parseopt(cOptDef,varargin{:});
fid = opt.fid;
w = opt.w;
U = opt.U;
a = opt.a;
nu = opt.nu;
l1 = ['(',num2str(a),'+sqrt(',num2str(a^2),'+',num2str(4*nu*w),'*i))/',num2str(2*nu)];
l2 = ['(',num2str(a),'-sqrt(',num2str(a^2),'+',num2str(4*nu*w),'*i))/',num2str(2*nu)];
refsol = ['(exp(',l1,'*x)-exp(',l2,'*x))/(exp(',l1,')-exp(',l2,'))*',num2str(U),'*exp(i*',num2str(w),'*t)'];
refsol0 = ['(exp(',l1,'*x)-exp(',l2,'*x))/(exp(',l1,')-exp(',l2,'))*',num2str(U)];
% Grid generation.
fea.grid = linegrid( 1/opt.hmax, 0, 1 );
% Problem definition.
fea.sdim = { 'x' };
fea = addphys( fea, @convectiondiffusion );
fea.phys.cd.sfun = { opt.sfun };
fea.phys.cd.eqn.coef{2,4} = { opt.nu };
fea.phys.cd.eqn.coef{3,4} = { opt.a };
fea = parsephys(fea);
% Parse and solve problem.
fea = parseprob( fea );
fea.bdr.d{1} = 0;
fea.bdr.d{2} = [num2str(U),'*cos(',num2str(w),'*t)'];
fea.bdr.n = cell(1,2);
x = fea.grid.p';
if( strcmp( opt.sfun,'sflag2' ) )
x = [ x; (x(2:end)+x(1:end-1))/2 ];
end
init = real( eval( refsol0 ) );
[fea.sol.u,tlist] = solvetime( fea, 'fid', fid, 'init', init, 'ischeme', opt.ischeme, 'tstep', opt.dt, 'tmax', 1 );
% Postprocessing.
if( opt.iplot>0 )
figure;
if( opt.iplot>1 )
i_sol_list = 1:numel(tlist);
else
i_sol_list = numel(tlist);
end
[~,ix] = sort( x );
for i_sol=i_sol_list
t = tlist(i_sol);
clf
postplot( fea, 'surfexpr', 'c', 'solnum', i_sol );
hold on
u_r = real( eval( refsol ) );
plot( sort(x), u_r(ix), 'r--' );
title( ['Solution at time ',num2str(t)])
xlabel( 'x' )
drawnow
end
end
% Error checking.
for i_sol=1:numel(tlist)
u_i = fea.sol.u(:,i_sol);
t = tlist(i_sol);
u_r = real( eval( refsol ) );
errnm(i_sol) = norm( u_i - u_r )/norm( u_r );
end
out.err = errnm;
out.pass = all( errnm<opt.tol );
if ( nargout==0 )
clear fea out
end