|
FEATool Multiphysics
v1.17.5
Finite Element Analysis Toolbox
|
EX_AXISTRESSSTRAIN5 Axisymmetric vibration modes of a hollow cylinder.
[ FEA, OUT ] = EX_AXISTRESSSTRAIN5( VARARGIN ) Axisymmetric vibration modes of a hollow cylinder (NAFEMS Free Vibration Benchmark 41).
[1] F. Abassian, D.J. Dawswell, and N.C. Knowles, Free Vibration Benchmarks, Volume 3, NAFEMS, Glasgow, 1987.
Accepts the following property/value pairs.
Input Value/{Default} Description
-----------------------------------------------------------------------------------
igrid scalar 0/{2} Cell type (>0=quadrilaterals, <0=triangles)
sfun string {sflag1} Shape function
iplot scalar 0/{1} Plot solution (=1)
.
Output Value/(Size) Description
-----------------------------------------------------------------------------------
fea struct Problem definition struct
out struct Output struct
cOptDef = { 'igrid', 2;
'sfun', 'sflag1';
'iplot', 1;
'tol', 0.01;
'fid', 1 };
[got,opt] = parseopt(cOptDef,varargin{:});
fid = opt.fid;
E = 2e11;
nu = 0.3;
rho = 8000;
% Geometry definition.
fea.sdim = {'r' 'z'};
gobj = gobj_rectangle( 1.8, 2.2, 0, 10, 'R1' );
fea.geom.objects = { gobj };
fea.grid = rectgrid( abs(opt.igrid)*2, abs(opt.igrid)*50, [ 1.8, 2.2; 0, 10 ]);
if( opt.igrid<0 )
fea.grid = quad2tri( fea.grid );
end
% Equations and problem definition.
fea = addphys( fea, @axistressstrain );
fea.phys.css.eqn.coef{1,end} = { nu };
fea.phys.css.eqn.coef{2,end} = { E };
fea.phys.css.eqn.coef{3,end} = { rho };
fea.phys.css.sfun = { opt.sfun, opt.sfun };
% Solve problem.
fea = parsephys( fea );
fea = parseprob( fea );
[fea.sol.u,fea.sol.l] = solveeig( fea, 'fid', fid );
% Postprocessing.
if( opt.iplot>0 )
postplot( fea, 'surfexpr', 'sqrt((r*u)^2+w^2)', 'solnum', 2 )
end
out = [];
f = sqrt(max(0,fea.sol.l))/(2*pi);
f_ref = [ 0; 243.773387; 378.534723; 394.046384; 397.467494; 405.041753 ];
out.err = norm(f_ref-f)/norm(f_ref);
out.pass = out.err < opt.tol;
if( nargout==0 )
clear fea out
end