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An Equation for the Bulk Modulus
of Composites Derived From the
Effective Medium Theory
Bulk modulus has wide applications in well engineering, seismic exploration, waste reinjec-
tion, and predicting pore pressure in carbonate reservoirs. However, there is no easy way to
obtain accurate values for the effective bulk modulus of rocks. Practically, researchers use
rigorous, costly, and time-consuming experiments on core samples. But, stress release and
changing rock’s environment have affected the accuracy of results. Also, it is impossible to
get accurate values of the effective bulk modulus from theory without accounting for the
deformation of microcracks in the rock. Existing models do not consider the presence of
microcracks because of the inability to define the positions of cracks relative to one
another. Thus, earlier studies introduced approximations to define the upper and lower
bounds of values. This study aims to overcome this limitation by accounting for the fluids
in the microcracks, apart from those in stiff pores. From the product of the surface area
and thickness of the fluid in the microcracks, the authors generated proportionality
between the volume of fluid and that of the grain and obtained expression for the crack
porosity. Then analytical and numerical techniques were applied to obtain models for
the effective bulk modulus. The results show that the presence and magnitude of inclusions
reduce the effective bulk modulus significantly. This was validated by a finite element anal-
ysis (FEA) using the FEATool run in MATLAB. In addition, higher volume of fluids in the
microcracks makes the rate of change of the bulk modulus with the porosity to be higher.
[DOI: 10.1115/1.4055628]
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Introduction
Rocks are composites comprising a solid matrix and fluid-filled

pore spaces [1–8] that combine to produce effective elastic proper-
ties. One such elastic property is the bulk modulus. This bulk
modulus is a parameter that is incorporated into geomechanics, par-
ticularly in planning and managing well engineering projects. It is
also important when carrying out geophysical explorations with
seismic data [9], and it defines how the volume of porous rocks
changes with external pressure, e.g., during the pressurization of
an oil wellbore. This parameter is useful during drilling cuttings
and wastewater reinjection [1] for the safe disposal of hazardous
materials derived from drilling activities. The study can extend its
application to the prediction of the bulk modulus of glassy/crystal-
line materials that possess porosity. Furthermore, it can find appli-
cation in predicting pore pressures in carbonate rocks because of the
relationship between bulk compressibility (inverse of the bulk
modulus) and effective pressure. The bulk modulus can be deter-
mined statically using experiments on core samples or dynamically
using data from wireline logs plus theoretical equations [10–12].
Engineers and scientists mostly use and rely upon the static bulk
modulus since it represents exact measurements. However, the
experimental procedure is very costly to carry out (time-consuming
and rigorous for some rocks, particularly shale or shaly rocks) and
may yield inaccurate results if the experimenter does not ensure
proper sample preservation. Changing the sample from its environ-
ment of stress (or stress release) can contribute to poor results from
the experiments. The values of the individual components of the
rock can differ significantly from that of the macroscopic (or

bulk) frame depending on critical parameters related to geological
factors in-situ.
There is currently the need to establish suitable ways of estimat-

ing the bulk modulus, especially when data for its components are
available. For example, the conventional layered-rock approach that
attempts to generate predictive models does not accurately simulate
the static process. During experimental runs, there will be closure
and/or the initiation of microcracks, which the conventional
models generally do not consider. If microcracks are present
in-situ, there will be fluids inside them plus those in the pores of
the rock. The conventional models do not account for the extra
fluids in microcracks. And this study provides a way to overcome
this limitation.
The basis for defining the average property of a mixture can be in

terms of conductivity, molar fraction, mass fraction, weight frac-
tion, or volumetric fraction. And the weight fraction of a species
may not be equal in magnitude to the volumetric fraction since
they do not represent the same quantity. These bases are applicable
in the theory of the effective medium, which describes analytically
the bulk behavior of composites. The effective medium approxima-
tion uses theories to estimate the physical properties of heteroge-
neous materials from their components. Belyaev and Tyurnev
[13] used the theory to predict the electrodynamic properties of a
dielectric medium composed of metallic nanoparticles. David and
Zimmerman [14] applied the effective medium theory to analyze
the properties of porous rocks. Finally, Wang and Pan [15] used
it to predict the physical properties of complex multiphase materi-
als. Thus, one can relate the volumetric contribution of the compo-
nents to the bulk modulus. However, the conventional methods
assume that the volumetric fraction of fluids is equivalent to the
porosity of the components without considering the fluids inside
microcracks. It is interesting to uncover accurate ways to estimate
the bulk modulus of reservoir rocks using porosity and the elastic
properties of the constituents. Apart from the fluids in the pores,
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some fluids exist inside microcracks. This is of much interest
because one cannot estimate correctly the elastic moduli of rocks
without knowledge of the geometric distribution of the constituents,
including those of microcracks [4,16]. To this end, an upper bound
and a lower bound were established for the bulk modulus whereby
subsequent models are expected to yield results between the limits.
It can invoke some level of curiosity when one considers the accu-
racy of the upper and lower bounds themselves, especially when
such bounds do not incorporate the contribution of microcracks
apart from assuming a linear combination of the layers. Accounting
for the fluids in the microcracks can help to overcome the challenge
of not defining the deformation of the microcracks in the stress-
strain approach. Thus, in this study, the fluids in the microcracks
contribute to the total fluids in the rock. This is to improve the
results of the effective medium approach for predicting bulk
modulus. The study considers how the bulk modulus changes
with porosity, and strives to improve the gaps in models used to
predict the effective bulk modulus.

The Effective Medium for Layered Rocks
The sedimentary rock is stratified into layers and comprises

various combinations of the pore space and solid matrix extending
over any direction. Allowing a linear combination of two layers,
one can represent their volumes by that of a rectangular prism,
which is the following expression:

V = LBh (1)

where V is the volume of the object, h is the thickness of the object,
L is the length of the object, and B is the width of the object. The
thickness of the material may be difficult to determine at the micro-
scopic level, but not at the macroscopic level. Over the same length
and width, one can use Eq. (1) to represent the volumes of each
layer as follows:

V1 = h1LB (2)

V2 = h2LB (3)

where V1 is the volume of layer 1, V2 is the volume of layer 2, h1 is
the thickness of layer 1, and h2 is the thickness of layer 2. The total
volume of the layers comprises the sum of the contributions from
each layer:

VT = LB(h1 + h2) (4)

where VT is the total volume of all the layers in the composite. The
percentage by volume of each layer is the volume of the layer
divided by the total volume, thus:

%V1 =
h1

h1 + h2
(5)

%V2 =
h2

h1 + h2
(6)

where %V1 is the percentage by volume of layer 1 and %V2 is the
percentage by volume of layer 2. The sum of the percentage by
volume of each layer equals unity. The volume ratio is the thickness
ratio when the unit is linear and has the same length and width. Sim-
ilarly, if the material has the same length, but different thicknesses
and widths, the volume ratio reduces to an area ratio. The volume
ratio in an arbitrary rock may not necessarily be equal to the area
ratio or length ratio, even though the sum of each ratio equals
unity. Thus, the effective bulk modulus of the two-layered-rock
can be calculated with the following expression:

Km =%V1K1 +%V2K2 (7)

where Km is the effective bulk modulus, K1 is the bulk modulus of
component 1, and K2 is the bulk modulus of component 2.

Some Conventional Methods Developed for the Bulk
Modulus
Several theories have been proposed for obtaining the bulk

modulus based on the fractional contribution of the constituents
and their deformations. There is the Voigt model which yields the
main upper bound of values established in the oil and gas industries
[16]. This model is one of the commonly and easily applied models
for obtaining the bulk modulus. The principle behind its formula-
tion is that the individual components are subjected to the same
strain while deforming. That is, the components are linearly
arranged. Fjær et al. [4] claimed that the model is the most appro-
priate for rocks at low values of porosities but the simplest non-
interacting approximations are well suited at low porosities.
However, its major limitation is that it ignores the deformation of
microcracks in the rock, as is the case with the other conventional
models. These microcracks are open surfaces in the rock that con-
tains some fluids. The mathematical expression of Voigt’s model
is the following:

KV = φKf + (1 − φ)Ks (8)

where Kv is Voigt’s bulk modulus, Kf is the bulk modulus of the
fluid component, Ks is the bulk modulus of the solid component,
and φ is porosity. When one compares Voigt’s model to a two-
component form of Eq. (7), comprised of pores and solid matrix,
one observes that the author equated the volume fraction of the
fluid to the porosity. Hill [17], based on the principle of energy con-
servation showed that the maximum possible value of the bulk
modulus of a composite is the Voigt bound.
The Reuss model is another commonly applied one in the indus-

try, and it yields results for lower bounds of the bulk modulus. It is
founded on the same principle as Voigt’s model but assumes that
the solid undergoes similar stresses to the liquid during deforma-
tion. When a rock is being carried by a liquid, there may be hydro-
static uniformity between the constituents, which makes the rock
tend to behave (or flow) as the liquid. Thus, the model seems to
act towards the strength of the liquid in the mixture, yielding
lower bounds of values. The mathematical expression for this
model is as follows [4]:

1
KR

=
φ

Kf
+
1 − φ

Ks
(9)

where KR is the Reuss’ bulk modulus. The same principle of energy
conservation implies that the Reuss model is the minimum possible
bulk modulus for rocks. It seems one can obtain a form of this equa-
tion from the bulk compressibility of the rock and its relationship
with the bulk modulus. This bulk compressibility considers the
deformation of the liquid and solids combined, and most liquids
can be incompressible. The bulk compressibility of rocks relates
inversely to the bulk modulus as follows [18–20]:

Cb =
1
Kb

(10)

where Cb is the bulk compressibility and Kb is the bulk modulus of
the rock. Allowing the following simple expression for the bulk
compressibility as a function of the compressibility of the matrix
and pore space:

Cb = φCp + (1 − φ)Cs (11)

where Cp is the pore compressibility and Cs is the matrix compress-
ibility. Then the inverse of the compressibility of the components
can be substituted into Eq. (11) to finally arrive at Eq. (9), assuming
the fluid occupies the pores only. From Eq. (11), the bulk compress-
ibility will tend to a uniform value if the components have approx-
imately equal compressibility.
The arithmetic average of Voigt and Reuss’ models has been

introduced to get results that fall within the lower and upper
bounds. This is the Voigt–Reuss–Hills (VRH) model [21], which
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produces results between the bounds depending on the relative mag-
nitude of the prevailing component in the rock. The equation is the
following expression:

KVRH =
[φKf + (1 − φ)Ks][φKs + (1 − φ)Kf ] + KfKs

2[φKs + (1 − φ)Kf ]
(12)

where KVRH is the Voigt–Reuss–Hill bulk modulus. The VRH
model will yield relatively accurate results when the components
have similar bulk modulus but the model does not work well
when there is a high elastic contrast between the components.
Other approaches have been introduced to predict the bulk

modulus. Some of these models possess theoretical background
but may yield inaccurate/unphysical values, as they do not define
the rock completely. Other models introduced more variables that
make analysis hard or complex but still produce results between
the bounds. Fjær et al. [4] suggested the following expression
based on the concept of critical porosity:

Kfr = Ks 1 −
φ

φc

( )
(13)

where φc is the critical porosity and Kfr is the bulk modulus of the
frame. The authors assumed that for a set of sand grains, there is a
maximum porosity beyond which the solids will not be in contact
anymore. They called this maximum porosity the critical porosity.
The basis for this formulation is that the bulk modulus of the
frame equals that of the solid when porosity is zero but disappears
when the porosity approaches the critical porosity. The values of the
critical porosity were taken as being equal to those in the standard
packing of spheres for uniform or random samples. The equation
cannot define the bulk modulus of the liquid component when
porosity equals unity as it is not explicitly based on the theory of
poroelasticity. It yields large distortions at low values of porosities.
The conventional Voigt and Reuss models satisfy this physical
interpretation when porosity is zero or one. Thus, the concept of
critical porosity requires slight modification or a redefinition of
what critical porosity stands for.
Hashin and Shtrikman [22] attempted to reduce the width of the

conventional Voigt and Reuss models. They introduced an equation
that is more complicated to solve since it requires more elastic
parameters than the three basic ones considered so far. The basis
for the formulation is the minimization of the potential elastic
energy of the rock assuming spherical symmetry. Their equation
for the upper and lower bounds are the following:

KHS+ = Ks +
φ

1
Kf − Ks

+
1 − φ

Ks + 1.333Gs

(14)

KHS− = Kf +
1 − φ

(1/(Ks − Kf )) + (φ/Kf )
(15)

where Gs is the shear modulus of the solid component, HS stands
for Hashin and Shtrikman, KHS+ is the upper bound, and KHS−

is the lower bound of the bulk modulus, which approximates
Reuss’ model. The shear modulus requires the relationship
between elastic moduli and the use of Poisson’s ratio. Based on
the relationship between Young’s modulus and bulk modulus,
and between Young’s modulus and shear modulus, one can approx-
imate the shear modulus to 0.7816 multiplied by the bulk modulus
of the solid. This is for an average value of Poisson’s ratio of about
0.19. If one ignores the shear modulus in the upper bound, one can
obtain Reuss’ model.

Methodology
The approach used to achieve the goals of this study is combined

empirical and analytical methods. The authors modified the volu-
metric contribution of the fluids and incorporated it into the
theory of the effective medium. The effective medium

approximation means that the sum of the product of the given
parameter and its volumetric contribution is the effective parameter:

P =
∑n
i=1

PiVi (16)

where P is the effective parameter, Pi is the value of the parameter
for component i, Vi is the volumetric contribution of the compo-
nents with the parametric value, and n is the number of components
considered. An arbitrary volume of rock with definite porosity and
bulk moduli of the constituents were used in the study. To predict
the bulk modulus of a composite comprising solids and pores, a
two-component system was chosen. The rock possesses some
fluids in the microcracks, which are a part of the system’s fluid.
Thus, the effective volume of fluids in the rock comprised the
volume of liquids in the pores and those in the microcracks:

Vf = Vp + Vc (17)

where Vc is the total volume of fluid in the rock, Vc is the volume of
fluids in the microcracks of the solid matrix, and Vp is the volume of
fluids in the pores. It is the belief that this yields a more representa-
tive value for the volume fraction of the fluid component. To
develop a well-defined expression for the fluids in the microcracks,
the authors used the product of the surface area open for storage and
the thickness of the fluid in the opening. The volume of fluids in the
microcracks of spherical solids was used to develop proportionality
between the volume of fluids and the volume of solids. From the set
of equations generated, a limiting condition was used to analytically
obtain the parametric constant in terms of porosity. The authors also
used numerical analysis to develop an expression for the bulk
modulus. However, the elegance of analytical methods favored
the study. From the analytical approach, the authors were able to
generalize to develop a model that can predict the effective bulk
modulus of a unit of rock comprised of different lithology.
To pursue the numerical approach, the average bulk modulus of

the conventional models was used to find a root for the parameter fol-
lowing the Newton–Raphson algorithm [23] and the LP Simple
Engine of the Excel Solver. The conventional models selected for
the averaging include the Voigt, Reuss, V–R–H, and HS models.
While the initial guess was obtained graphically. In addition, the
finite element analysis (FEA) was used to validate the results using
properties from a selected wellbore. To do this, an elemental 3D
volume representative of the size of the rock was selected and
gridded using the FEATool. This tool runs on MATLAB. Then a
model for predicting the bulk modulus of the grids was developed
and a computer experiment was run to obtain the strains and stresses
from the in-built linear elasticity program. The basis for the devel-
oped model is the strain energy per volume needed to compress the
grids frame by the application of external load. A force of 1000 N
was applied to the faces of the element, and the force divided by
area gave the magnitude of the external load. This load served as
the boundary condition on the faces of the element.
Data from the Tertiary basin of the Agbada formation in the

Niger Delta were extracted to aid the analysis. To get the porosity
at the interval, the authors applied the Raymer–Hunt–Gardner equa-
tion using the data from the transit and mineral [1]. While the data
from gamma-ray aided in obtaining the Poisson’s ratio for the Ter-
tiary formation.

Model Development for the Bulk Modulus of the
Composite Rocks
The reservoir comprises a solid matrix, fluid-filled and connected

pore spaces, and fluid-filled microcracks existing as a unit. Using
the volumetric contributions of pores and solid matrix as the basis
of a two-component system, Eq. (7) gives the following expression
for the effective bulk modulus:

K =%Vf Kf +%VsKs (18)
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where %Vf is the percentage by volume of the fluid component, Kf

is the bulk modulus of the fluid component, %Vs is the percentage
by volume of the solid components, and Ks is the bulk modulus of
the solid components. Here, the volumetric factor of the fluid need
not be solely dependent on the volume of the pores as is the tradition
but is determined by including the fluids in the microcracks. The
total volume of fluids in the rock equals those in the pores and
those in the microcracks as given in Eq. (17). Wang et al. [9]
implied that the total porosity comprised components of the crack
porosity and the stiff porosity while experimenting on rock cores.
If all the fluids are perfectly contained in the pores, then the
volume of fluids becomes equivalent to the volume of fluids in
the pores. The solid grains may be irregular, but spherical shapes
are applicable. In addition, the grains will most likely be randomly
packed to achieve the best density. Nevertheless, the volume of the
thin film of fluid existing in microcracks can be given as the product
of the surface area covered by the fluids and the thickness of the
fluids. Using spherical grains and extracting the radius of the
sphere from its volume, yields the following expression:

Vfilm = 4.8hfilmV
(2/3)
g (19)

where Vfilm is the volume of the film of fluids in the crack, which
may be the product of the volumetric rate into the crack and time,
hfilm is the thickness of the film of fluids in the crack, and Vg is
the volume of spherical grains. Thus, the volume of the crack
fluids is proportional to the two-third power of the volume of
solids, and the following expression holds for the crack volume:

Vc = KcV
2/3
g (20)

where Kc is the proportionality constant with units in volume raised
to one-third. One can intuitively relate this parameter to porosity and
solid matrix, or use numerical analysis to obtain a closed value.
To follow a numerical scheme, combine Eq. (20) with Eq. (17)

and substitute into the expression for the bulk modulus. The follow-
ing expression emerges after defining the porosity from microme-
chanics:

K = (φ + a(1 − φ)2/3)Kf + (1 − (φ + a(1 − φ)2/3))Ks (21)

The dimensionless parameter a=V−(1/3)Kc relates the volume to
the proportionality constant of Eq. (20). With the use of the root-
finding tool, one can use a set of local or regional data to find the
value of the parameter that makes the function F(a) equal to zero.
Experts use numerical methods (NM) to easily find the values of
function/parameters that may be very complex, rigorous, or hard
to solve. However, one cannot compare NM to the elegance of ana-
lytical solutions, especially when such solutions are obtainable.
Numerical analysis should not be used to make generalizations in
the petroleum industry where geologic settings can vary signifi-
cantly from one region to another. The exception is when such gen-
eralization is localized.
If there is no grain in the system, the porosity equals one and

there will be no microcracks to store the fluids. Similarly, if there
is no fluid in the system, porosity equals zero and there will be
no fluid in the microcracks. Thus, a limiting condition is the pres-
ence of a fluid-phase and solid-phase in the system, and the follow-
ing equation satisfies the proportional constant of Eq. (20):

Kc = φ(1 − φ)V1/3
p (22)

Equation (20) turns into the following expression for the volume
of fluids in the cracks:

Vc = V1/3
p V2/3

g (φ(1 − φ)) (23)

From Eq. (23), the expression for the total or modified volume of
fluids becomes the following:

Vf = Vp + V1/3
p V2/3

g (φ(1 − φ)) (24)

Then the expression for the volume ratio of the fluid can be given
as follows:

Vf

V
=
Vp

V
+

Vp

V

( )1/3 Vg

V

( )2/3

(φ(1 − φ)) (25)

Frommicromechanics, the ratio of pore volume to bulk volume is
equal to porosity while that of grain volume to bulk volume equals
−1 porosity. Thus, the volume ratio of the fluid reduces to the fol-
lowing:

Vf

V
= φ + (1 − φ)5/3φ4/3 (26)

The sum of the volumes of the fluids and solids is the total volume
of the unit; thus, the volume ratio of the solid is the following:

Vs

V
= 1 −

Vf

V
(27)

Therefore, the effective bulk modulus for the composite becomes
the following expression:

K = Kf (φ + (1 − φ)5/3φ4/3) + Ks(1 − (φ + (1 − φ)5/3φ4/3) (28)

Following the same line of reasoning for a single unit with two
components of solids and fluids, the effective bulk modulus of a
n-unit of rocks can be logically expressed as follows:

K =
∑n
i=1

Kfi(φi + (1 − φi)
5/3φ4/3

i ) + Ksi(1 − φi − (1 − φi)
5/3φ4/3

i )

(29)

where Kfi is the bulk modulus of the fluid in the ith unit of the rock,
Ksi is the bulk modulus of the solid in the unit, φi is the unit porosity,
and n is the number of rock units in the analysis. For example, to
analyze the effective bulk modulus of a three-unit rock comprising
sandstone, limestone, and shale, the respective bulk moduli of the
fluid and solid components of each unit and their porosity needs
incorporation into Eq. (29).
Continuing the development of Eq. (23) requires the use of

micromechanics. Following the definition of porosity as the
volume of voids per bulk volume, one can define the crack porosity
in a similar form, such that the following obtains:

Vc = φcV (30)

Using the micromechanical definition of porosity and matrix
content, the following emerges:

Vc = (1 − φ)5/3φ4/3V (31)

Thus, comparing Eqs. (30) and (31) indicates that the crack
porosity is approximated as the following expression:

φc = (1 − φ)5/3φ4/3 (32)

NB: the concept of crack porosity finds application in the
enhancement of the permeability of reservoir rocks and geomecha-
nics. This crack porosity (or fracture porosity) is the result of the
tectonic fracturing of reservoir rocks, and it is a type of secondary
porosity quantifiable using acoustic or resistivity image logs
[24,25]. Unfortunately, the image log is not available for every
wellbore, and it is costly and hard to estimate fracture porosity.
For example, its estimation requires the integration of the frequen-
cies from the image logs and crack aperture into production and
stimulation models [25]. Fortunately, the secondary porosity is
taken as the difference between the density porosity and the sonic
porosity for clastic or non-clastic rocks [24,26]:

φSec = φD − φS (33)

where φSec is the secondary porosity, φD is the density porosity, and
φS is the sonic porosity. It is possible to use this difference to
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validate the model for the crack porosity developed in this study.
The conventional models for obtaining formation porosity are the
following [1,24]:

φD =
ρm − ρ

ρm − ρf
(34)

φS =
t − tm
tf − ρm

×
1
C

(35)

where ρm is the matrix density, ρb is the bulk density from the wire-
line log, ρf is the fluid density, t is the transit time observed, tm is the
matric transit time, tf is the fluid transit time, and C is the compac-
tion factor for correction, which varies between 1 and 1.3. Apart
from theoretical models, laboratory analyses are available for the
determination of porosity [24,27].

Analysis and Discussions
This section evaluates the effective bulk modulus of a section of

the Nembe Well-X in the Tertiary basin of the Niger Delta. This
wellbore is likely a future candidate for drill cuttings reinjection,
and Fig. 1 shows the data of the wireline log between 5500 ft
(1676.95 m) and 6300 ft (1920.87 m). Based on the transit time in
the wellbore with a value of 73.4 µs/ft (2640.85 µs/m) and sand-
stone at 6070 ft (1850.74 m), the porosity is 0.163 using the
Raymer–Hunt–Gardner (RHG) model [1]. The bulk modulus of
the solid matrix is 5.076 MPsi (35,000 MPa) and that of the fluid
is 0.29 MPsi (2000 MPa). Since the problem is a one-unit layer
comprising only sandstone, Eq. (28) is applicable. The effective
bulk modulus gives a value of 3.7329 MPsi (25,739.05 MPa),
which tends towards the bulk modulus of the solid. Figure 2
shows the variation of the bulk modulus with porosity, which indi-
cates an inverse relationship consistent with earlier studies
[4,14,19]. Using the random number generator of MS Excel, 50
data points for porosity were created from zero to one and
applied to Eq. (28). The trend satisfies the conventional boundary
conditions when porosity ranges from zero to one. At porosity
equal to one, the value of the effective bulk modulus equals that

of the fluid, while at porosity equal to zero, the value equals that
of the solid. When the rock is viewed as a unit, the porosity then
behaves as an inclusion that reduces the bulk modulus of a solid
framework as its concentration increases. Fjær et al. [4] confirmed
that the presence of microcracks reduces core samples’ stiffness.
These cracks are inclusions into the rocks and so, they reduce the
elastic properties of the rock. If the conventional models for defor-
mation take the microcracks into account, it will be extremely hard
to define their positions relative to one another. Thus, one cannot
overemphasize the advantage of the approach of this study. The
porosity equal to zero is analogous to inclusion concentration
equal to zero, at which point the rock is strongest. Thus, this
study can be useful when engineers aim to quantify the effect of
natural fractures (inclusions) on the bulk modulus during drilling
waste injection, for example. For such processes, the zones with a
large number of natural fractures will possess lower elastic stiffness.
The following section compares the model developed in this

study with the conventional models for predicting the effective
bulk modulus. Using the data in Fig. 2, the models of Voigt,
Hashin and Shtrikman, Reuss, and Voigt–Reuss–Hill were used
to calculate the bulk modulus. The plots of the bulk modulus

Fig. 1 The wireline log for the Nembe Well-X: Cal is caliper (1 in.=0.0254 m), Den is bulk
density (1 g/cc=1000 kg/m3), TT is transit time (1 μs/ft=3.28 μs/m), and GR is gamma ray
(API). For depth, 1 ft=0.3047 m.

Fig. 2 Variation of the bulk modulus with the porosity
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against porosity are shown in Fig. 3. The values obtained are
between Voigt and Ruess’ models, over the range of the porosity
considered, except at the boundaries where all the models converge.
The study model (K model) yielded results between the upper and
lower bounds and was compared favorably with the HS model. If
the extra fluids in the microcracks were not incorporated into the
analysis, the study model would yield values similar to Voigt’s
upper bound. The distribution of the models under investigation
does not follow the same path. This is because of differences in
the underlying principles that form their basis. The Voigt model
indicates a more linear path than the others as indicated in Fig. 3,
while the Ruess’ model dropped significantly because of its ten-
dency towards the bulk modulus of the fluid. If the difference
between the modulus of the solid and fluid is narrow, the Ruess’
model will converge towards the other results.
To consider the accuracy of the model of this study, one can use

the numerical method to obtain the parameter in Eq. (21). The equa-
tion is recast into the form of a numerical analysis so that one can
obtain the value of the parameter (a) that makes the function
equal to zero. Then the following expression emerges:

K − (φ + a(1 − φ)2/3)Kf + (1 − (φ + a(1 − φ)2/3))Ks = 0 (36)

A numerical scheme requires the use of representative local or
regional data for the bulk modulus. However, one can derive a para-
metric value by taking the average value of the Voigt, V–R–H, and
HS models. Figure 4 shows the root (0.16805) when values of the

parameter are selected from −1 to 4. This value can be taken as
the initial guess of the Newton–Raphson method to get a more rep-
resentative root. With the data given in this study, the average value
of the effective bulk modulus for the chosen models is 3.4257 MPsi
(23,621.03 MPa). With the initial guess of 0.16805, the Newton–
Raphson method [23] yields a value of 0.168047 after two itera-
tions. The LP Simplex engine of the Excel Solver also gave the
same value. Therefore, the expression for the bulk modulus, using
a numerical scheme, can also be represented as follows:

K = Kf (φ + 0.16805(1 − φ)2/3) + Ks(1 − φ − 0.16805(1 − φ)2/3)

(37)

NB: it is more appropriate to use regional or local data to obtain
the parameter for any numerical scheme. Figure 5 shows how the
study model compares with the numerical model, which was
obtained using the average bulk modulus of the selected models.
Further validation of the proposed model using FEA follows, but

this is not an easy procedure since the study model is not one of the
conventional built-in models for such purpose. Moreover, the
porosity is not a length-scale for petrophysical analysis [28]; there-
fore, it cannot be used as a representative elemental volume (REV)
for the FEA. Rather, the authors believe that it can be a character-
istic of the grids used for the analysis and the solid frame is
capable of showing the trend of the bulk modulus. However, the
model is valid if it satisfies the linear elasticity of FEA. With a

Fig. 3 Bulk modulus versus porosity for various models

Fig. 4 The root of numerical analysis for the Voigt, V-R-H, and HS models
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simple 3D geometry characterized by the following: Poisson ratio
of 0.3, bulk density of 2348.45 kg/m3, Young’s modulus of the
element of 30.88 GPa, and a displacement force of 1000 N, one
can validate the model. The force results in work done per
volume to displace the poroelastic grids of the frame as follows [5]:

dW = σijdεij + Ppdξ (38)

where dW is work done per volume, σij is the total stress tensor, ɛij
is the small strain tensor, ξ is a parameter representing fluid content,
and Pp is pore pressure. For no change in the fluid content in the
grids, the work done reduces to the following expression:

dW = σijdεij (39)

Using the externally applied pressure on the element, the work
increment per volume for small strain approximates the following
expression:

dW = Kdεi (40)

where the variable ɛi is the small volumetric strain in the grid. The
integration of Eq. (40) and subsequent application of the pressure-

volume work yield the following bulk modulus for the finite ele-
ments:

K =
P

εv
(1 − φ) (41)

where P is the compressive stress on the grids, which is obtained
from the linear elasticity of the FEATool. Equation (41) is a
simple case for the solid frame. Using an REV of 500m×
500 m ×1850m for the x, y, and z directions, the authors obtained
the following from the computer: 1248 grid cells, which were
refined to 2187 grid points with a triangulation of 9987. The grid
cell means volume was 549.87 and the grid cell mean the quality
of 0.6814. The experiment showed that the displacement of the
rock increased with the applied force (Fig. 6), which is consistent
with the theory of elasticity [4]. The tool was run under the devel-
oped geometry and the applied force was varied to obtain the cor-
responding displacement. Figure 7 shows the Von Mises stress on
the element while Fig. 8 shows the strain caused by the application
of force. From the strain in the grids (15.44 × 1011) and the corre-
sponding stress (5.1576 Pa·s), the bulk modulus of the element
gave the results shown in Fig. 9.

Fig. 5 Comparing the model and the numerical bulk modulus

Fig. 6 The linear deformation of the elements under bulk compression
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It was stated that the approach of the critical porosity requires
slight modification to make it possess the significant characteristics
of poroelasticity. In its current state, the model predicts the results of
the solid frame although it is capable of yielding results for the
porous material as a whole. Equation (13) is different from the con-
ventional relationship between the rock frame and the solid mate-
rial, which is given as follows [4]:

Kfr = Ks(1 − φ) (42)

Although both equations predict that the rock’s frame disappears
at porosity equals unity, Eq. (42) defines the absolute characteristics
of the solid only, while Eq. (13) implicitly defines the character of
the solid and pores. While the model can be modified to include the
property of the fluid, the following insight can be added. The grain
sizes, sorting, packing, and shape control the porosity [29–31], and
as long as the factors causing packing are active, the rock will
always be in contact with each other. However, if the sizes of the
grains can be made bigger, a point will reach when the grains
will escape the dimension of the original frame. This is the
maximum porosity, above which the grains will not be in contact
with one another inside the original frame. Thus, one can pose
the following modified equation that still maintains the requirement
of the frame balance:

Kfr = Ks 1 −
φ

φc

( )x( )
(43)

Where the parameter x is a correction factor that can be obtained
experimentally or numerically. To overcome the challenge of
finding the critical porosity, one can apply the boundary condition
of the fluid. When the porosity is equivalent to one, the frame
approximates the bulk modulus of the fluid; thus, the following
expression emerges:

Kf = Ks 1 −
1
φc

( )x( )
(44)

Then one can relate the critical porosity to the bulk modulus of
the solid and fluid as follows:

1
φc

( )x

=1 −
Kf

Ks
(45)

The frame bulk modulus now approximates the effective bulk
modulus as follows:

K = Ks − (Ks − Kf )φ
x (46)

Note that when the value of the parameter (x) equals unity, one
obtains Voigt’s bulk modulus. However, with the use of the data of
this study and the numerical scheme, the value of the parameter (x)
is 0.8228. Like before, one can apply regional or local data to get a
more accurate value for the parameter. Figure 10 is a comparison
of the modified frame porosity and the other models. The modified
frame model is very close to the average of the HS and VRHmodels.

Fig. 7 Von Mises stress on the element

Fig. 8 The lateral strain on the element
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Equations (28), (36), and (46) will most likely yield similar
results when the same set of local data is used to obtain the param-
eters. The Voigt and Reuss models that follow the concept of defor-
mation of layers yield different results most probably because they
do not consider the deformation of microcracks. The rate of change
of the bulk modulus with porosity depends on the difference
between the fluid and solid bulk moduli. This is observed when
one differentiates the bulk modulus with respect to porosity. For
example, differentiating Eqs. (28), (36), and (46) with respect to
porosity shows that the analytical method has the largest recovery
of the bulk modulus compared to the numerical and modified
frame models.
To validate Eq. (32), which is the model developed for the crack

porosity, use the data from the wellbore and the expression for the
secondary porosity. The substitution of Eqs. (34) and (35) into Eq.
(33), and subsequently using the average compaction factor of 1.15
for sonic porosity yield the following:

φS =
2.65 − 2.348
2.65 − 1.0

−
73.4 − 55.5
189 − 55.5

×
1

1.15
=
0.302
1.65

−
17.9
133.5

×
1

1.15

= 0.0664

Using Eq. (32) and the computed porosity of 0.163 from the R–
H–G equation yield the following:

φc = (1 − 0.163)5/3 × 0.1634/3 = 0.7433 × 0.08904 = 0.0662

The accuracy between these values (over 99%) is an indication
that the crack porosity is accurate, yields representative result,
and constitutes the major part of the secondary porosity in this well-
bore. NB: fracture porosity is commonly lower than 1% of bulk
volume in carbonates or clastic rocks [24]. Higher porosity will
yield higher crack porosity using Eq. (32).

Conclusion
The goal of this study was to develop a means to predict the bulk

modulus of rocks based on the effective medium theory. One objec-
tive was to overcome the limitation of conventional models, which
do not include the deformation of microcracks. This was achieved
by accounting for the volume of fluids in the microcracks and
using the effective medium theory. The FEA and petroleum indus-
try equations were used to validate the models developed in this
study, and the results of the bulk modulus lie between the bounds
of the Voigt and Reuss models. The following points are drawn
from the study:

(i) The addition of the fluids in microcracks yields results lower
than the Voigt model but higher than the Reuss model.

(ii) The presence of microcracks/inclusions reduces the effec-
tive bulk modulus of the rock.

Fig. 9 Model validation with the FEA

Fig. 10 The display of the modified frame model and the other models
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(iii) When the secondary porosity is mainly from natural cracks,
higher primary porosity corresponds to higher crack
porosity.

(iv) The rate of change of bulk modulus with porosity is higher
when one considers the fluids in the microcracks.

(v) The magnitude and concentration of inclusions significantly
affect how rocks respond to external stresses.

(vi) The critical porosity approach is a sophisticated way of pre-
dicting the effective bulk modulus when the boundary con-
dition for fluids is incorporated.
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